Metamath Proof Explorer


Theorem cpmidg2sum

Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A = N Mat R
cpmadugsum.b B = Base A
cpmadugsum.p P = Poly 1 R
cpmadugsum.y Y = N Mat P
cpmadugsum.t T = N matToPolyMat R
cpmadugsum.x X = var 1 R
cpmadugsum.e × ˙ = mulGrp P
cpmadugsum.m · ˙ = Y
cpmadugsum.r × ˙ = Y
cpmadugsum.1 1 ˙ = 1 Y
cpmadugsum.g + ˙ = + Y
cpmadugsum.s - ˙ = - Y
cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
cpmadugsum.j J = N maAdju P
cpmadugsum.0 0 ˙ = 0 Y
cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
cpmidgsum2.c C = N CharPlyMat R
cpmidgsum2.k K = C M
cpmidg2sum.u U = algSc P
Assertion cpmidg2sum N Fin R CRing M B s b B 0 s Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A = N Mat R
2 cpmadugsum.b B = Base A
3 cpmadugsum.p P = Poly 1 R
4 cpmadugsum.y Y = N Mat P
5 cpmadugsum.t T = N matToPolyMat R
6 cpmadugsum.x X = var 1 R
7 cpmadugsum.e × ˙ = mulGrp P
8 cpmadugsum.m · ˙ = Y
9 cpmadugsum.r × ˙ = Y
10 cpmadugsum.1 1 ˙ = 1 Y
11 cpmadugsum.g + ˙ = + Y
12 cpmadugsum.s - ˙ = - Y
13 cpmadugsum.i I = X · ˙ 1 ˙ - ˙ T M
14 cpmadugsum.j J = N maAdju P
15 cpmadugsum.0 0 ˙ = 0 Y
16 cpmadugsum.g2 G = n 0 if n = 0 0 ˙ - ˙ T M × ˙ T b 0 if n = s + 1 T b s if s + 1 < n 0 ˙ T b n 1 - ˙ T M × ˙ T b n
17 cpmidgsum2.c C = N CharPlyMat R
18 cpmidgsum2.k K = C M
19 cpmidg2sum.u U = algSc P
20 eqid K · ˙ 1 ˙ = K · ˙ 1 ˙
21 1 2 3 4 6 7 8 10 19 17 18 20 cpmidgsum N Fin R CRing M B K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙
22 21 eqcomd N Fin R CRing M B Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙ = K · ˙ 1 ˙
23 22 ad3antrrr N Fin R CRing M B s b B 0 s K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙ = K · ˙ 1 ˙
24 simpr N Fin R CRing M B s b B 0 s K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i
25 23 24 eqtrd N Fin R CRing M B s b B 0 s K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 cpmidgsum2 N Fin R CRing M B s b B 0 s K · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i
27 25 26 reximddv2 N Fin R CRing M B s b B 0 s Y i 0 i × ˙ X · ˙ U coe 1 K i · ˙ 1 ˙ = Y i 0 i × ˙ X · ˙ G i