Metamath Proof Explorer


Theorem cpmidgsum

Description: Representation of the identity matrix multiplied with the characteristic polynomial of a matrix as group sum. (Contributed by AV, 7-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
Assertion cpmidgsum N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 eqid Base P = Base P
14 10 1 2 3 13 chpmatply1 N Fin R CRing M B C M Base P
15 11 14 eqeltrid N Fin R CRing M B K Base P
16 eqid Base Y = Base Y
17 eqid N matToPolyMat R = N matToPolyMat R
18 eqid Base R = Base R
19 3 4 16 7 6 5 17 1 2 9 18 13 9 8 12 pmatcollpwscmat N Fin R CRing K Base P H = Y n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙
20 15 19 syld3an3 N Fin R CRing M B H = Y n 0 n × ˙ X · ˙ U coe 1 K n · ˙ 1 ˙