Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|
2 |
|
cpmidgsum.b |
|
3 |
|
cpmidgsum.p |
|
4 |
|
cpmidgsum.y |
|
5 |
|
cpmidgsum.x |
|
6 |
|
cpmidgsum.e |
|
7 |
|
cpmidgsum.m |
|
8 |
|
cpmidgsum.1 |
|
9 |
|
cpmidgsum.u |
|
10 |
|
cpmidgsum.c |
|
11 |
|
cpmidgsum.k |
|
12 |
|
cpmidgsum.h |
|
13 |
|
cpmidgsumm2pm.o |
|
14 |
|
cpmidgsumm2pm.m |
|
15 |
|
cpmidgsumm2pm.t |
|
16 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmidgsum |
|
17 |
|
3simpa |
|
18 |
17
|
adantr |
|
19 |
|
eqid |
|
20 |
10 1 2 3 19
|
chpmatply1 |
|
21 |
11 20
|
eqeltrid |
|
22 |
|
eqid |
|
23 |
|
eqid |
|
24 |
22 19 3 23
|
coe1fvalcl |
|
25 |
21 24
|
sylan |
|
26 |
|
crngring |
|
27 |
26
|
anim2i |
|
28 |
1
|
matring |
|
29 |
2 13
|
ringidcl |
|
30 |
27 28 29
|
3syl |
|
31 |
30
|
3adant3 |
|
32 |
31
|
adantr |
|
33 |
|
eqid |
|
34 |
15 1 2 3 4 33 23 9 14 7
|
mat2pmatlin |
|
35 |
18 25 32 34
|
syl12anc |
|
36 |
15 1 2 3 4 33
|
mat2pmatrhm |
|
37 |
13 8
|
rhm1 |
|
38 |
17 36 37
|
3syl |
|
39 |
38
|
adantr |
|
40 |
39
|
oveq2d |
|
41 |
35 40
|
eqtr2d |
|
42 |
41
|
oveq2d |
|
43 |
42
|
mpteq2dva |
|
44 |
43
|
oveq2d |
|
45 |
16 44
|
eqtrd |
|