Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|
2 |
|
cpmidgsum.b |
|
3 |
|
cpmidgsum.p |
|
4 |
|
cpmidgsum.y |
|
5 |
|
cpmidgsum.x |
|
6 |
|
cpmidgsum.e |
|
7 |
|
cpmidgsum.m |
|
8 |
|
cpmidgsum.1 |
|
9 |
|
cpmidgsum.u |
|
10 |
|
cpmidgsum.c |
|
11 |
|
cpmidgsum.k |
|
12 |
|
cpmidgsum.h |
|
13 |
|
cpmidgsumm2pm.o |
|
14 |
|
cpmidgsumm2pm.m |
|
15 |
|
cpmidgsumm2pm.t |
|
16 |
|
cpmidgsum.w |
|
17 |
|
cpmidpmat.p |
|
18 |
|
cpmidpmat.z |
|
19 |
|
cpmidpmat.m |
|
20 |
|
cpmidpmat.e |
|
21 |
|
cpmidpmat.i |
|
22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cpmidgsumm2pm |
|
23 |
22
|
fveq2d |
|
24 |
|
eqid |
|
25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem1 |
|
26 |
25
|
eqcomd |
|
27 |
26
|
adantl |
|
28 |
27
|
fveq2d |
|
29 |
28
|
oveq2d |
|
30 |
29
|
mpteq2dva |
|
31 |
30
|
oveq2d |
|
32 |
31
|
fveq2d |
|
33 |
|
3simpa |
|
34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem2 |
|
35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem3 |
|
36 |
|
fveq2 |
|
37 |
36
|
oveq1d |
|
38 |
37
|
cbvmptv |
|
39 |
38
|
eleq1i |
|
40 |
38
|
breq1i |
|
41 |
39 40
|
anbi12i |
|
42 |
3 4 16 19 20 18 1 2 17 21 6 5 7 15
|
pm2mp |
|
43 |
41 42
|
sylan2b |
|
44 |
33 34 35 43
|
syl12anc |
|
45 |
38
|
fveq1i |
|
46 |
45
|
fveq2i |
|
47 |
46
|
oveq2i |
|
48 |
47
|
mpteq2i |
|
49 |
48
|
oveq2i |
|
50 |
49
|
fveq2i |
|
51 |
45
|
oveq1i |
|
52 |
51
|
mpteq2i |
|
53 |
52
|
oveq2i |
|
54 |
44 50 53
|
3eqtr4g |
|
55 |
32 54
|
eqtrd |
|
56 |
25
|
adantl |
|
57 |
56
|
oveq1d |
|
58 |
57
|
mpteq2dva |
|
59 |
58
|
oveq2d |
|
60 |
23 55 59
|
3eqtrd |
|