| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmidgsum.a |
|
| 2 |
|
cpmidgsum.b |
|
| 3 |
|
cpmidgsum.p |
|
| 4 |
|
cpmidgsum.y |
|
| 5 |
|
cpmidgsum.x |
|
| 6 |
|
cpmidgsum.e |
|
| 7 |
|
cpmidgsum.m |
|
| 8 |
|
cpmidgsum.1 |
|
| 9 |
|
cpmidgsum.u |
|
| 10 |
|
cpmidgsum.c |
|
| 11 |
|
cpmidgsum.k |
|
| 12 |
|
cpmidgsum.h |
|
| 13 |
|
cpmidgsumm2pm.o |
|
| 14 |
|
cpmidgsumm2pm.m |
|
| 15 |
|
cpmidgsumm2pm.t |
|
| 16 |
|
cpmidgsum.w |
|
| 17 |
|
cpmidpmat.p |
|
| 18 |
|
cpmidpmat.z |
|
| 19 |
|
cpmidpmat.m |
|
| 20 |
|
cpmidpmat.e |
|
| 21 |
|
cpmidpmat.i |
|
| 22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cpmidgsumm2pm |
|
| 23 |
22
|
fveq2d |
|
| 24 |
|
eqid |
|
| 25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem1 |
|
| 26 |
25
|
eqcomd |
|
| 27 |
26
|
adantl |
|
| 28 |
27
|
fveq2d |
|
| 29 |
28
|
oveq2d |
|
| 30 |
29
|
mpteq2dva |
|
| 31 |
30
|
oveq2d |
|
| 32 |
31
|
fveq2d |
|
| 33 |
|
3simpa |
|
| 34 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem2 |
|
| 35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24
|
cpmidpmatlem3 |
|
| 36 |
|
fveq2 |
|
| 37 |
36
|
oveq1d |
|
| 38 |
37
|
cbvmptv |
|
| 39 |
38
|
eleq1i |
|
| 40 |
38
|
breq1i |
|
| 41 |
39 40
|
anbi12i |
|
| 42 |
3 4 16 19 20 18 1 2 17 21 6 5 7 15
|
pm2mp |
|
| 43 |
41 42
|
sylan2b |
|
| 44 |
33 34 35 43
|
syl12anc |
|
| 45 |
38
|
fveq1i |
|
| 46 |
45
|
fveq2i |
|
| 47 |
46
|
oveq2i |
|
| 48 |
47
|
mpteq2i |
|
| 49 |
48
|
oveq2i |
|
| 50 |
49
|
fveq2i |
|
| 51 |
45
|
oveq1i |
|
| 52 |
51
|
mpteq2i |
|
| 53 |
52
|
oveq2i |
|
| 54 |
44 50 53
|
3eqtr4g |
|
| 55 |
32 54
|
eqtrd |
|
| 56 |
25
|
adantl |
|
| 57 |
56
|
oveq1d |
|
| 58 |
57
|
mpteq2dva |
|
| 59 |
58
|
oveq2d |
|
| 60 |
23 55 59
|
3eqtrd |
|