Metamath Proof Explorer


Theorem cpmidpmatlem1

Description: Lemma 1 for cpmidpmat . (Contributed by AV, 13-Nov-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
cpmidgsumm2pm.o O = 1 A
cpmidgsumm2pm.m ˙ = A
cpmidgsumm2pm.t T = N matToPolyMat R
cpmidpmat.g G = k 0 coe 1 K k ˙ O
Assertion cpmidpmatlem1 L 0 G L = coe 1 K L ˙ O

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 cpmidgsumm2pm.o O = 1 A
14 cpmidgsumm2pm.m ˙ = A
15 cpmidgsumm2pm.t T = N matToPolyMat R
16 cpmidpmat.g G = k 0 coe 1 K k ˙ O
17 fveq2 k = L coe 1 K k = coe 1 K L
18 17 oveq1d k = L coe 1 K k ˙ O = coe 1 K L ˙ O
19 ovex coe 1 K L ˙ O V
20 18 16 19 fvmpt L 0 G L = coe 1 K L ˙ O