Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|
2 |
|
cpmidgsum.b |
|
3 |
|
cpmidgsum.p |
|
4 |
|
cpmidgsum.y |
|
5 |
|
cpmidgsum.x |
|
6 |
|
cpmidgsum.e |
|
7 |
|
cpmidgsum.m |
|
8 |
|
cpmidgsum.1 |
|
9 |
|
cpmidgsum.u |
|
10 |
|
cpmidgsum.c |
|
11 |
|
cpmidgsum.k |
|
12 |
|
cpmidgsum.h |
|
13 |
|
cpmidgsumm2pm.o |
|
14 |
|
cpmidgsumm2pm.m |
|
15 |
|
cpmidgsumm2pm.t |
|
16 |
|
cpmidpmat.g |
|
17 |
|
simpl1 |
|
18 |
|
crngring |
|
19 |
18
|
3ad2ant2 |
|
20 |
19
|
adantr |
|
21 |
|
eqid |
|
22 |
10 1 2 3 21
|
chpmatply1 |
|
23 |
11 22
|
eqeltrid |
|
24 |
|
eqid |
|
25 |
|
eqid |
|
26 |
24 21 3 25
|
coe1fvalcl |
|
27 |
23 26
|
sylan |
|
28 |
18
|
anim2i |
|
29 |
1
|
matring |
|
30 |
2 13
|
ringidcl |
|
31 |
28 29 30
|
3syl |
|
32 |
31
|
3adant3 |
|
33 |
32
|
adantr |
|
34 |
25 1 2 14
|
matvscl |
|
35 |
17 20 27 33 34
|
syl22anc |
|
36 |
35 16
|
fmptd |
|
37 |
2
|
fvexi |
|
38 |
|
nn0ex |
|
39 |
37 38
|
pm3.2i |
|
40 |
|
elmapg |
|
41 |
39 40
|
mp1i |
|
42 |
36 41
|
mpbird |
|