Metamath Proof Explorer


Theorem cpmidpmatlem2

Description: Lemma 2 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
cpmidgsumm2pm.o O = 1 A
cpmidgsumm2pm.m ˙ = A
cpmidgsumm2pm.t T = N matToPolyMat R
cpmidpmat.g G = k 0 coe 1 K k ˙ O
Assertion cpmidpmatlem2 N Fin R CRing M B G B 0

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 cpmidgsumm2pm.o O = 1 A
14 cpmidgsumm2pm.m ˙ = A
15 cpmidgsumm2pm.t T = N matToPolyMat R
16 cpmidpmat.g G = k 0 coe 1 K k ˙ O
17 simpl1 N Fin R CRing M B k 0 N Fin
18 crngring R CRing R Ring
19 18 3ad2ant2 N Fin R CRing M B R Ring
20 19 adantr N Fin R CRing M B k 0 R Ring
21 eqid Base P = Base P
22 10 1 2 3 21 chpmatply1 N Fin R CRing M B C M Base P
23 11 22 eqeltrid N Fin R CRing M B K Base P
24 eqid coe 1 K = coe 1 K
25 eqid Base R = Base R
26 24 21 3 25 coe1fvalcl K Base P k 0 coe 1 K k Base R
27 23 26 sylan N Fin R CRing M B k 0 coe 1 K k Base R
28 18 anim2i N Fin R CRing N Fin R Ring
29 1 matring N Fin R Ring A Ring
30 2 13 ringidcl A Ring O B
31 28 29 30 3syl N Fin R CRing O B
32 31 3adant3 N Fin R CRing M B O B
33 32 adantr N Fin R CRing M B k 0 O B
34 25 1 2 14 matvscl N Fin R Ring coe 1 K k Base R O B coe 1 K k ˙ O B
35 17 20 27 33 34 syl22anc N Fin R CRing M B k 0 coe 1 K k ˙ O B
36 35 16 fmptd N Fin R CRing M B G : 0 B
37 2 fvexi B V
38 nn0ex 0 V
39 37 38 pm3.2i B V 0 V
40 elmapg B V 0 V G B 0 G : 0 B
41 39 40 mp1i N Fin R CRing M B G B 0 G : 0 B
42 36 41 mpbird N Fin R CRing M B G B 0