Metamath Proof Explorer


Theorem cpmidpmatlem3

Description: Lemma 3 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A = N Mat R
cpmidgsum.b B = Base A
cpmidgsum.p P = Poly 1 R
cpmidgsum.y Y = N Mat P
cpmidgsum.x X = var 1 R
cpmidgsum.e × ˙ = mulGrp P
cpmidgsum.m · ˙ = Y
cpmidgsum.1 1 ˙ = 1 Y
cpmidgsum.u U = algSc P
cpmidgsum.c C = N CharPlyMat R
cpmidgsum.k K = C M
cpmidgsum.h H = K · ˙ 1 ˙
cpmidgsumm2pm.o O = 1 A
cpmidgsumm2pm.m ˙ = A
cpmidgsumm2pm.t T = N matToPolyMat R
cpmidpmat.g G = k 0 coe 1 K k ˙ O
Assertion cpmidpmatlem3 N Fin R CRing M B finSupp 0 A G

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A = N Mat R
2 cpmidgsum.b B = Base A
3 cpmidgsum.p P = Poly 1 R
4 cpmidgsum.y Y = N Mat P
5 cpmidgsum.x X = var 1 R
6 cpmidgsum.e × ˙ = mulGrp P
7 cpmidgsum.m · ˙ = Y
8 cpmidgsum.1 1 ˙ = 1 Y
9 cpmidgsum.u U = algSc P
10 cpmidgsum.c C = N CharPlyMat R
11 cpmidgsum.k K = C M
12 cpmidgsum.h H = K · ˙ 1 ˙
13 cpmidgsumm2pm.o O = 1 A
14 cpmidgsumm2pm.m ˙ = A
15 cpmidgsumm2pm.t T = N matToPolyMat R
16 cpmidpmat.g G = k 0 coe 1 K k ˙ O
17 fvexd N Fin R CRing M B 0 A V
18 ovexd N Fin R CRing M B k 0 coe 1 K k ˙ O V
19 fveq2 k = l coe 1 K k = coe 1 K l
20 19 oveq1d k = l coe 1 K k ˙ O = coe 1 K l ˙ O
21 fvexd N Fin R CRing M B 0 R V
22 eqid Base P = Base P
23 10 1 2 3 22 chpmatply1 N Fin R CRing M B C M Base P
24 11 23 eqeltrid N Fin R CRing M B K Base P
25 eqid coe 1 K = coe 1 K
26 eqid Base R = Base R
27 25 22 3 26 coe1fvalcl K Base P n 0 coe 1 K n Base R
28 24 27 sylan N Fin R CRing M B n 0 coe 1 K n Base R
29 crngring R CRing R Ring
30 29 3ad2ant2 N Fin R CRing M B R Ring
31 eqid 0 R = 0 R
32 3 22 31 mptcoe1fsupp R Ring K Base P finSupp 0 R n 0 coe 1 K n
33 30 24 32 syl2anc N Fin R CRing M B finSupp 0 R n 0 coe 1 K n
34 21 28 33 mptnn0fsuppr N Fin R CRing M B s 0 l 0 s < l l / n coe 1 K n = 0 R
35 csbfv l / n coe 1 K n = coe 1 K l
36 35 a1i N Fin R CRing M B l 0 l / n coe 1 K n = coe 1 K l
37 36 eqeq1d N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l = 0 R
38 37 biimpa N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l = 0 R
39 1 matsca2 N Fin R CRing R = Scalar A
40 39 3adant3 N Fin R CRing M B R = Scalar A
41 40 ad2antrr N Fin R CRing M B l 0 l / n coe 1 K n = 0 R R = Scalar A
42 41 fveq2d N Fin R CRing M B l 0 l / n coe 1 K n = 0 R 0 R = 0 Scalar A
43 38 42 eqtrd N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l = 0 Scalar A
44 43 oveq1d N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l ˙ O = 0 Scalar A ˙ O
45 1 matlmod N Fin R Ring A LMod
46 29 45 sylan2 N Fin R CRing A LMod
47 46 3adant3 N Fin R CRing M B A LMod
48 1 matring N Fin R Ring A Ring
49 29 48 sylan2 N Fin R CRing A Ring
50 2 13 ringidcl A Ring O B
51 49 50 syl N Fin R CRing O B
52 51 3adant3 N Fin R CRing M B O B
53 eqid Scalar A = Scalar A
54 eqid 0 Scalar A = 0 Scalar A
55 eqid 0 A = 0 A
56 2 53 14 54 55 lmod0vs A LMod O B 0 Scalar A ˙ O = 0 A
57 47 52 56 syl2anc N Fin R CRing M B 0 Scalar A ˙ O = 0 A
58 57 ad2antrr N Fin R CRing M B l 0 l / n coe 1 K n = 0 R 0 Scalar A ˙ O = 0 A
59 44 58 eqtrd N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l ˙ O = 0 A
60 59 ex N Fin R CRing M B l 0 l / n coe 1 K n = 0 R coe 1 K l ˙ O = 0 A
61 60 imim2d N Fin R CRing M B l 0 s < l l / n coe 1 K n = 0 R s < l coe 1 K l ˙ O = 0 A
62 61 ralimdva N Fin R CRing M B l 0 s < l l / n coe 1 K n = 0 R l 0 s < l coe 1 K l ˙ O = 0 A
63 62 reximdv N Fin R CRing M B s 0 l 0 s < l l / n coe 1 K n = 0 R s 0 l 0 s < l coe 1 K l ˙ O = 0 A
64 34 63 mpd N Fin R CRing M B s 0 l 0 s < l coe 1 K l ˙ O = 0 A
65 17 18 20 64 mptnn0fsuppd N Fin R CRing M B finSupp 0 A k 0 coe 1 K k ˙ O
66 16 65 eqbrtrid N Fin R CRing M B finSupp 0 A G