Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
|
2 |
|
cpmidgsum.b |
|
3 |
|
cpmidgsum.p |
|
4 |
|
cpmidgsum.y |
|
5 |
|
cpmidgsum.x |
|
6 |
|
cpmidgsum.e |
|
7 |
|
cpmidgsum.m |
|
8 |
|
cpmidgsum.1 |
|
9 |
|
cpmidgsum.u |
|
10 |
|
cpmidgsum.c |
|
11 |
|
cpmidgsum.k |
|
12 |
|
cpmidgsum.h |
|
13 |
|
cpmidgsumm2pm.o |
|
14 |
|
cpmidgsumm2pm.m |
|
15 |
|
cpmidgsumm2pm.t |
|
16 |
|
cpmidpmat.g |
|
17 |
|
fvexd |
|
18 |
|
ovexd |
|
19 |
|
fveq2 |
|
20 |
19
|
oveq1d |
|
21 |
|
fvexd |
|
22 |
|
eqid |
|
23 |
10 1 2 3 22
|
chpmatply1 |
|
24 |
11 23
|
eqeltrid |
|
25 |
|
eqid |
|
26 |
|
eqid |
|
27 |
25 22 3 26
|
coe1fvalcl |
|
28 |
24 27
|
sylan |
|
29 |
|
crngring |
|
30 |
29
|
3ad2ant2 |
|
31 |
|
eqid |
|
32 |
3 22 31
|
mptcoe1fsupp |
|
33 |
30 24 32
|
syl2anc |
|
34 |
21 28 33
|
mptnn0fsuppr |
|
35 |
|
csbfv |
|
36 |
35
|
a1i |
|
37 |
36
|
eqeq1d |
|
38 |
37
|
biimpa |
|
39 |
1
|
matsca2 |
|
40 |
39
|
3adant3 |
|
41 |
40
|
ad2antrr |
|
42 |
41
|
fveq2d |
|
43 |
38 42
|
eqtrd |
|
44 |
43
|
oveq1d |
|
45 |
1
|
matlmod |
|
46 |
29 45
|
sylan2 |
|
47 |
46
|
3adant3 |
|
48 |
1
|
matring |
|
49 |
29 48
|
sylan2 |
|
50 |
2 13
|
ringidcl |
|
51 |
49 50
|
syl |
|
52 |
51
|
3adant3 |
|
53 |
|
eqid |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
2 53 14 54 55
|
lmod0vs |
|
57 |
47 52 56
|
syl2anc |
|
58 |
57
|
ad2antrr |
|
59 |
44 58
|
eqtrd |
|
60 |
59
|
ex |
|
61 |
60
|
imim2d |
|
62 |
61
|
ralimdva |
|
63 |
62
|
reximdv |
|
64 |
34 63
|
mpd |
|
65 |
17 18 20 64
|
mptnn0fsuppd |
|
66 |
16 65
|
eqbrtrid |
|