Metamath Proof Explorer


Theorem cpncn

Description: A C^n function is continuous. (Contributed by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpncn S F C n S N F : dom F cn

Proof

Step Hyp Ref Expression
1 recnprss S S
2 1 adantr S F C n S N S
3 simpl S F C n S N S
4 0nn0 0 0
5 4 a1i S F C n S N 0 0
6 elfvdm F C n S N N dom C n S
7 6 adantl S F C n S N N dom C n S
8 fncpn S C n S Fn 0
9 fndm C n S Fn 0 dom C n S = 0
10 2 8 9 3syl S F C n S N dom C n S = 0
11 7 10 eleqtrd S F C n S N N 0
12 nn0uz 0 = 0
13 11 12 eleqtrdi S F C n S N N 0
14 cpnord S 0 0 N 0 C n S N C n S 0
15 3 5 13 14 syl3anc S F C n S N C n S N C n S 0
16 simpr S F C n S N F C n S N
17 15 16 sseldd S F C n S N F C n S 0
18 elcpn S 0 0 F C n S 0 F 𝑝𝑚 S S D n F 0 : dom F cn
19 2 5 18 syl2anc S F C n S N F C n S 0 F 𝑝𝑚 S S D n F 0 : dom F cn
20 17 19 mpbid S F C n S N F 𝑝𝑚 S S D n F 0 : dom F cn
21 20 simpld S F C n S N F 𝑝𝑚 S
22 dvn0 S F 𝑝𝑚 S S D n F 0 = F
23 2 21 22 syl2anc S F C n S N S D n F 0 = F
24 20 simprd S F C n S N S D n F 0 : dom F cn
25 23 24 eqeltrrd S F C n S N F : dom F cn