Metamath Proof Explorer


Theorem cpnfval

Description: Condition for n-times continuous differentiability. (Contributed by Stefan O'Rear, 15-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnfval S C n S = n 0 f 𝑝𝑚 S | S D n f n : dom f cn

Proof

Step Hyp Ref Expression
1 cnex V
2 1 elpw2 S 𝒫 S
3 oveq2 s = S 𝑝𝑚 s = 𝑝𝑚 S
4 oveq1 s = S s D n f = S D n f
5 4 fveq1d s = S s D n f n = S D n f n
6 5 eleq1d s = S s D n f n : dom f cn S D n f n : dom f cn
7 3 6 rabeqbidv s = S f 𝑝𝑚 s | s D n f n : dom f cn = f 𝑝𝑚 S | S D n f n : dom f cn
8 7 mpteq2dv s = S n 0 f 𝑝𝑚 s | s D n f n : dom f cn = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
9 df-cpn C n = s 𝒫 n 0 f 𝑝𝑚 s | s D n f n : dom f cn
10 nn0ex 0 V
11 10 mptex n 0 f 𝑝𝑚 S | S D n f n : dom f cn V
12 8 9 11 fvmpt S 𝒫 C n S = n 0 f 𝑝𝑚 S | S D n f n : dom f cn
13 2 12 sylbir S C n S = n 0 f 𝑝𝑚 S | S D n f n : dom f cn