Metamath Proof Explorer


Theorem cpnnen

Description: The complex numbers are equinumerous to the powerset of the positive integers. (Contributed by Mario Carneiro, 16-Jun-2013)

Ref Expression
Assertion cpnnen 𝒫

Proof

Step Hyp Ref Expression
1 rexpen 2
2 eleq1w v = x v x
3 eleq1w w = y w y
4 2 3 bi2anan9 v = x w = y v w x y
5 oveq2 w = y i w = i y
6 oveq12 v = x i w = i y v + i w = x + i y
7 5 6 sylan2 v = x w = y v + i w = x + i y
8 7 eqeq2d v = x w = y z = v + i w z = x + i y
9 4 8 anbi12d v = x w = y v w z = v + i w x y z = x + i y
10 9 cbvoprab12v v w z | v w z = v + i w = x y z | x y z = x + i y
11 df-mpo x , y x + i y = x y z | x y z = x + i y
12 10 11 eqtr4i v w z | v w z = v + i w = x , y x + i y
13 12 cnref1o v w z | v w z = v + i w : 2 1-1 onto
14 reex V
15 14 14 xpex 2 V
16 15 f1oen v w z | v w z = v + i w : 2 1-1 onto 2
17 13 16 ax-mp 2
18 1 17 entr3i
19 rpnnen 𝒫
20 18 19 entr3i 𝒫