Metamath Proof Explorer


Theorem cpnord

Description: C^n conditions are ordered by strength. (Contributed by Stefan O'Rear, 16-Nov-2014) (Revised by Mario Carneiro, 11-Feb-2015)

Ref Expression
Assertion cpnord S M 0 N M C n S N C n S M

Proof

Step Hyp Ref Expression
1 fveq2 n = M C n S n = C n S M
2 1 sseq1d n = M C n S n C n S M C n S M C n S M
3 2 imbi2d n = M S M 0 C n S n C n S M S M 0 C n S M C n S M
4 fveq2 n = m C n S n = C n S m
5 4 sseq1d n = m C n S n C n S M C n S m C n S M
6 5 imbi2d n = m S M 0 C n S n C n S M S M 0 C n S m C n S M
7 fveq2 n = m + 1 C n S n = C n S m + 1
8 7 sseq1d n = m + 1 C n S n C n S M C n S m + 1 C n S M
9 8 imbi2d n = m + 1 S M 0 C n S n C n S M S M 0 C n S m + 1 C n S M
10 fveq2 n = N C n S n = C n S N
11 10 sseq1d n = N C n S n C n S M C n S N C n S M
12 11 imbi2d n = N S M 0 C n S n C n S M S M 0 C n S N C n S M
13 ssid C n S M C n S M
14 13 2a1i M S M 0 C n S M C n S M
15 simprl S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn f 𝑝𝑚 S
16 recnprss S S
17 16 ad2antrr S M 0 m M S
18 17 adantr S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S
19 simplll S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S
20 eluznn0 M 0 m M m 0
21 20 adantll S M 0 m M m 0
22 21 adantr S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn m 0
23 dvnf S f 𝑝𝑚 S m 0 S D n f m : dom S D n f m
24 19 15 22 23 syl3anc S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m : dom S D n f m
25 dvnbss S f 𝑝𝑚 S m 0 dom S D n f m dom f
26 19 15 22 25 syl3anc S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom S D n f m dom f
27 dvnp1 S f 𝑝𝑚 S m 0 S D n f m + 1 = S D S D n f m
28 18 15 22 27 syl3anc S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m + 1 = S D S D n f m
29 simprr S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m + 1 : dom f cn
30 28 29 eqeltrrd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m S : dom f cn
31 cncff S D n f m S : dom f cn S D n f m S : dom f
32 30 31 syl S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m S : dom f
33 32 fdmd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom S D n f m S = dom f
34 cnex V
35 elpm2g V S f 𝑝𝑚 S f : dom f dom f S
36 34 19 35 sylancr S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn f 𝑝𝑚 S f : dom f dom f S
37 15 36 mpbid S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn f : dom f dom f S
38 37 simprd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom f S
39 26 38 sstrd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom S D n f m S
40 18 24 39 dvbss S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom S D n f m S dom S D n f m
41 33 40 eqsstrrd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom f dom S D n f m
42 26 41 eqssd S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn dom S D n f m = dom f
43 42 feq2d S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m : dom S D n f m S D n f m : dom f
44 24 43 mpbid S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m : dom f
45 dvcn S S D n f m : dom f dom f S dom S D n f m S = dom f S D n f m : dom f cn
46 18 44 38 33 45 syl31anc S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn S D n f m : dom f cn
47 15 46 jca S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn f 𝑝𝑚 S S D n f m : dom f cn
48 47 ex S M 0 m M f 𝑝𝑚 S S D n f m + 1 : dom f cn f 𝑝𝑚 S S D n f m : dom f cn
49 peano2nn0 m 0 m + 1 0
50 21 49 syl S M 0 m M m + 1 0
51 elcpn S m + 1 0 f C n S m + 1 f 𝑝𝑚 S S D n f m + 1 : dom f cn
52 17 50 51 syl2anc S M 0 m M f C n S m + 1 f 𝑝𝑚 S S D n f m + 1 : dom f cn
53 elcpn S m 0 f C n S m f 𝑝𝑚 S S D n f m : dom f cn
54 17 21 53 syl2anc S M 0 m M f C n S m f 𝑝𝑚 S S D n f m : dom f cn
55 48 52 54 3imtr4d S M 0 m M f C n S m + 1 f C n S m
56 55 ssrdv S M 0 m M C n S m + 1 C n S m
57 sstr2 C n S m + 1 C n S m C n S m C n S M C n S m + 1 C n S M
58 56 57 syl S M 0 m M C n S m C n S M C n S m + 1 C n S M
59 58 expcom m M S M 0 C n S m C n S M C n S m + 1 C n S M
60 59 a2d m M S M 0 C n S m C n S M S M 0 C n S m + 1 C n S M
61 3 6 9 12 14 60 uzind4 N M S M 0 C n S N C n S M
62 61 com12 S M 0 N M C n S N C n S M
63 62 3impia S M 0 N M C n S N C n S M