Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
|
2 |
|
cramerimp.b |
|
3 |
|
cramerimp.v |
|
4 |
|
cramerimp.e |
|
5 |
|
cramerimp.h |
|
6 |
|
cramerimp.x |
|
7 |
|
cramerimp.d |
|
8 |
|
cramerimp.q |
|
9 |
|
crngring |
|
10 |
9
|
adantr |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
eqid |
|
13 |
7 1 2 12
|
mdetf |
|
14 |
13
|
adantr |
|
15 |
14
|
3ad2ant1 |
|
16 |
1 2
|
matrcl |
|
17 |
16
|
simpld |
|
18 |
17
|
adantr |
|
19 |
10 18
|
anim12i |
|
20 |
19
|
3adant3 |
|
21 |
|
ne0i |
|
22 |
9 21
|
anim12ci |
|
23 |
22
|
anim1i |
|
24 |
23
|
3adant3 |
|
25 |
|
simpl |
|
26 |
25
|
3ad2ant3 |
|
27 |
1 2 3 6
|
slesolvec |
|
28 |
24 26 27
|
sylc |
|
29 |
|
simpr |
|
30 |
29
|
3ad2ant1 |
|
31 |
|
eqid |
|
32 |
1 2 3 31
|
ma1repvcl |
|
33 |
20 28 30 32
|
syl12anc |
|
34 |
4 33
|
eqeltrid |
|
35 |
15 34
|
ffvelrnd |
|
36 |
|
simpr |
|
37 |
36
|
3ad2ant3 |
|
38 |
|
eqid |
|
39 |
|
eqid |
|
40 |
12 38 8 39
|
dvrcan3 |
|
41 |
11 35 37 40
|
syl3anc |
|
42 |
|
simpl |
|
43 |
42
|
3ad2ant1 |
|
44 |
12 38
|
unitcl |
|
45 |
44
|
adantl |
|
46 |
45
|
3ad2ant3 |
|
47 |
12 39
|
crngcom |
|
48 |
43 35 46 47
|
syl3anc |
|
49 |
48
|
oveq1d |
|
50 |
18
|
adantl |
|
51 |
42
|
adantr |
|
52 |
29
|
adantr |
|
53 |
50 51 52
|
3jca |
|
54 |
53
|
3adant3 |
|
55 |
1 3 4 7
|
cramerimplem1 |
|
56 |
54 28 55
|
syl2anc |
|
57 |
41 49 56
|
3eqtr3rd |
|
58 |
1 2 3 4 5 6 7 39
|
cramerimplem3 |
|
59 |
58
|
3adant3r |
|
60 |
59
|
oveq1d |
|
61 |
57 60
|
eqtrd |
|