Metamath Proof Explorer


Theorem cramerimplem2

Description: Lemma 2 for cramerimp : The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramerimp.a A = N Mat R
cramerimp.b B = Base A
cramerimp.v V = Base R N
cramerimp.e E = 1 A N matRepV R Z I
cramerimp.h H = X N matRepV R Y I
cramerimp.x · ˙ = R maVecMul N N
cramerimp.m × ˙ = R maMul N N N
Assertion cramerimplem2 R CRing I N X B Y V X · ˙ Z = Y X × ˙ E = H

Proof

Step Hyp Ref Expression
1 cramerimp.a A = N Mat R
2 cramerimp.b B = Base A
3 cramerimp.v V = Base R N
4 cramerimp.e E = 1 A N matRepV R Z I
5 cramerimp.h H = X N matRepV R Y I
6 cramerimp.x · ˙ = R maVecMul N N
7 cramerimp.m × ˙ = R maMul N N N
8 eqid Base R = Base R
9 eqid R = R
10 simpl R CRing I N R CRing
11 10 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y R CRing
12 1 2 matrcl X B N Fin R V
13 12 simpld X B N Fin
14 13 adantr X B Y V N Fin
15 14 3ad2ant2 R CRing I N X B Y V X · ˙ Z = Y N Fin
16 13 anim2i R CRing X B R CRing N Fin
17 16 ancomd R CRing X B N Fin R CRing
18 1 8 matbas2 N Fin R CRing Base R N × N = Base A
19 17 18 syl R CRing X B Base R N × N = Base A
20 2 19 eqtr4id R CRing X B B = Base R N × N
21 20 eleq2d R CRing X B X B X Base R N × N
22 21 biimpd R CRing X B X B X Base R N × N
23 22 ex R CRing X B X B X Base R N × N
24 23 adantr R CRing I N X B X B X Base R N × N
25 24 com12 X B R CRing I N X B X Base R N × N
26 25 pm2.43a X B R CRing I N X Base R N × N
27 26 adantr X B Y V R CRing I N X Base R N × N
28 27 impcom R CRing I N X B Y V X Base R N × N
29 28 3adant3 R CRing I N X B Y V X · ˙ Z = Y X Base R N × N
30 crngring R CRing R Ring
31 30 adantr R CRing I N R Ring
32 31 14 anim12i R CRing I N X B Y V R Ring N Fin
33 32 3adant3 R CRing I N X B Y V X · ˙ Z = Y R Ring N Fin
34 ne0i I N N
35 34 adantl R CRing I N N
36 35 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y N
37 15 15 36 3jca R CRing I N X B Y V X · ˙ Z = Y N Fin N Fin N
38 3 eleq2i Y V Y Base R N
39 38 biimpi Y V Y Base R N
40 39 adantl X B Y V Y Base R N
41 10 40 anim12i R CRing I N X B Y V R CRing Y Base R N
42 41 3adant3 R CRing I N X B Y V X · ˙ Z = Y R CRing Y Base R N
43 simp3 R CRing I N X B Y V X · ˙ Z = Y X · ˙ Z = Y
44 eqid Base R N × N = Base R N × N
45 eqid Base R N = Base R N
46 8 44 3 6 45 mavmulsolcl N Fin N Fin N R CRing Y Base R N X · ˙ Z = Y Z V
47 46 imp N Fin N Fin N R CRing Y Base R N X · ˙ Z = Y Z V
48 37 42 43 47 syl21anc R CRing I N X B Y V X · ˙ Z = Y Z V
49 simpr R CRing I N I N
50 49 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y I N
51 eqid 1 A = 1 A
52 1 2 3 51 ma1repvcl R Ring N Fin Z V I N 1 A N matRepV R Z I B
53 4 52 eqeltrid R Ring N Fin Z V I N E B
54 33 48 50 53 syl12anc R CRing I N X B Y V X · ˙ Z = Y E B
55 20 eqcomd R CRing X B Base R N × N = B
56 55 ad2ant2r R CRing I N X B Y V Base R N × N = B
57 56 3adant3 R CRing I N X B Y V X · ˙ Z = Y Base R N × N = B
58 54 57 eleqtrrd R CRing I N X B Y V X · ˙ Z = Y E Base R N × N
59 7 8 9 11 15 15 15 29 58 mamuval R CRing I N X B Y V X · ˙ Z = Y X × ˙ E = i N , j N R l N i X l R l E j
60 31 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y R Ring
61 60 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y i N j N R Ring
62 simpl X B Y V X B
63 62 3ad2ant2 R CRing I N X B Y V X · ˙ Z = Y X B
64 63 48 50 3jca R CRing I N X B Y V X · ˙ Z = Y X B Z V I N
65 64 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y i N j N X B Z V I N
66 simp2 R CRing I N X B Y V X · ˙ Z = Y i N j N i N
67 simp3 R CRing I N X B Y V X · ˙ Z = Y i N j N j N
68 43 3ad2ant1 R CRing I N X B Y V X · ˙ Z = Y i N j N X · ˙ Z = Y
69 eqid 0 R = 0 R
70 1 2 3 51 69 4 6 mulmarep1gsum2 R Ring X B Z V I N i N j N X · ˙ Z = Y R l N i X l R l E j = if j = I Y i i X j
71 61 65 66 67 68 70 syl113anc R CRing I N X B Y V X · ˙ Z = Y i N j N R l N i X l R l E j = if j = I Y i i X j
72 71 mpoeq3dva R CRing I N X B Y V X · ˙ Z = Y i N , j N R l N i X l R l E j = i N , j N if j = I Y i i X j
73 simpr X B Y V Y V
74 73 3ad2ant2 R CRing I N X B Y V X · ˙ Z = Y Y V
75 eqid N matRepV R = N matRepV R
76 1 2 75 3 marepvval X B Y V I N X N matRepV R Y I = i N , j N if j = I Y i i X j
77 63 74 50 76 syl3anc R CRing I N X B Y V X · ˙ Z = Y X N matRepV R Y I = i N , j N if j = I Y i i X j
78 5 77 eqtr2id R CRing I N X B Y V X · ˙ Z = Y i N , j N if j = I Y i i X j = H
79 59 72 78 3eqtrd R CRing I N X B Y V X · ˙ Z = Y X × ˙ E = H