Step |
Hyp |
Ref |
Expression |
1 |
|
cramerimp.a |
|
2 |
|
cramerimp.b |
|
3 |
|
cramerimp.v |
|
4 |
|
cramerimp.e |
|
5 |
|
cramerimp.h |
|
6 |
|
cramerimp.x |
|
7 |
|
cramerimp.d |
|
8 |
|
cramerimp.t |
|
9 |
|
simpl |
|
10 |
1 2
|
matrcl |
|
11 |
10
|
simpld |
|
12 |
11
|
adantr |
|
13 |
9 12
|
anim12ci |
|
14 |
13
|
3adant3 |
|
15 |
|
eqid |
|
16 |
1 15
|
matmulr |
|
17 |
14 16
|
syl |
|
18 |
17
|
oveqd |
|
19 |
18
|
fveq2d |
|
20 |
1 2 3 4 5 6 15
|
cramerimplem2 |
|
21 |
20
|
fveq2d |
|
22 |
|
simp1l |
|
23 |
|
simp2l |
|
24 |
|
crngring |
|
25 |
24
|
adantr |
|
26 |
25 12
|
anim12i |
|
27 |
26
|
3adant3 |
|
28 |
|
ne0i |
|
29 |
24 28
|
anim12ci |
|
30 |
1 2 3 6
|
slesolvec |
|
31 |
29 30
|
sylan |
|
32 |
31
|
3impia |
|
33 |
|
simp1r |
|
34 |
|
eqid |
|
35 |
1 2 3 34
|
ma1repvcl |
|
36 |
27 32 33 35
|
syl12anc |
|
37 |
4 36
|
eqeltrid |
|
38 |
|
eqid |
|
39 |
1 2 7 8 38
|
mdetmul |
|
40 |
22 23 37 39
|
syl3anc |
|
41 |
19 21 40
|
3eqtr3rd |
|