Metamath Proof Explorer


Theorem cramerlem1

Description: Lemma 1 for cramer . (Contributed by AV, 21-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramer.a A = N Mat R
cramer.b B = Base A
cramer.v V = Base R N
cramer.d D = N maDet R
cramer.x · ˙ = R maVecMul N N
cramer.q × ˙ = / r R
Assertion cramerlem1 R CRing X B Y V D X Unit R Z V X · ˙ Z = Y Z = i N D X N matRepV R Y i × ˙ D X

Proof

Step Hyp Ref Expression
1 cramer.a A = N Mat R
2 cramer.b B = Base A
3 cramer.v V = Base R N
4 cramer.d D = N maDet R
5 cramer.x · ˙ = R maVecMul N N
6 cramer.q × ˙ = / r R
7 simp1 R CRing X B Y V D X Unit R Z V X · ˙ Z = Y R CRing
8 7 anim1i R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N R CRing a N
9 simpl2 R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N X B Y V
10 pm3.22 D X Unit R X · ˙ Z = Y X · ˙ Z = Y D X Unit R
11 10 3adant2 D X Unit R Z V X · ˙ Z = Y X · ˙ Z = Y D X Unit R
12 11 3ad2ant3 R CRing X B Y V D X Unit R Z V X · ˙ Z = Y X · ˙ Z = Y D X Unit R
13 12 adantr R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N X · ˙ Z = Y D X Unit R
14 eqid 1 A N matRepV R Z a = 1 A N matRepV R Z a
15 eqid X N matRepV R Y a = X N matRepV R Y a
16 1 2 3 14 15 5 4 6 cramerimp R CRing a N X B Y V X · ˙ Z = Y D X Unit R Z a = D X N matRepV R Y a × ˙ D X
17 8 9 13 16 syl3anc R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N Z a = D X N matRepV R Y a × ˙ D X
18 17 ralrimiva R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N Z a = D X N matRepV R Y a × ˙ D X
19 elmapfn Z Base R N Z Fn N
20 19 3 eleq2s Z V Z Fn N
21 20 3ad2ant2 D X Unit R Z V X · ˙ Z = Y Z Fn N
22 21 3ad2ant3 R CRing X B Y V D X Unit R Z V X · ˙ Z = Y Z Fn N
23 2fveq3 a = i D X N matRepV R Y a = D X N matRepV R Y i
24 23 oveq1d a = i D X N matRepV R Y a × ˙ D X = D X N matRepV R Y i × ˙ D X
25 ovexd R CRing X B Y V D X Unit R Z V X · ˙ Z = Y a N D X N matRepV R Y a × ˙ D X V
26 ovexd R CRing X B Y V D X Unit R Z V X · ˙ Z = Y i N D X N matRepV R Y i × ˙ D X V
27 22 24 25 26 fnmptfvd R CRing X B Y V D X Unit R Z V X · ˙ Z = Y Z = i N D X N matRepV R Y i × ˙ D X a N Z a = D X N matRepV R Y a × ˙ D X
28 18 27 mpbird R CRing X B Y V D X Unit R Z V X · ˙ Z = Y Z = i N D X N matRepV R Y i × ˙ D X