Database
BASIC LINEAR ALGEBRA
The determinant
Cramer's rule
cramerlem2
Next ⟩
cramerlem3
Metamath Proof Explorer
Ascii
Unicode
Theorem
cramerlem2
Description:
Lemma 2 for
cramer
.
(Contributed by
AV
, 21-Feb-2019)
(Revised by
AV
, 1-Mar-2019)
Ref
Expression
Hypotheses
cramer.a
⊢
A
=
N
Mat
R
cramer.b
⊢
B
=
Base
A
cramer.v
⊢
V
=
Base
R
N
cramer.d
⊢
D
=
N
maDet
R
cramer.x
⊢
·
˙
=
R
maVecMul
N
N
cramer.q
⊢
×
˙
=
/
r
⁡
R
Assertion
cramerlem2
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
→
∀
z
∈
V
X
·
˙
z
=
Y
→
z
=
i
∈
N
⟼
D
⁡
X
N
matRepV
R
Y
⁡
i
×
˙
D
⁡
X
Proof
Step
Hyp
Ref
Expression
1
cramer.a
⊢
A
=
N
Mat
R
2
cramer.b
⊢
B
=
Base
A
3
cramer.v
⊢
V
=
Base
R
N
4
cramer.d
⊢
D
=
N
maDet
R
5
cramer.x
⊢
·
˙
=
R
maVecMul
N
N
6
cramer.q
⊢
×
˙
=
/
r
⁡
R
7
simpll1
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
R
∈
CRing
8
simpll2
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
X
∈
B
∧
Y
∈
V
9
simpll3
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
D
⁡
X
∈
Unit
⁡
R
10
simplr
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
z
∈
V
11
simpr
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
X
·
˙
z
=
Y
12
1
2
3
4
5
6
cramerlem1
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
z
=
i
∈
N
⟼
D
⁡
X
N
matRepV
R
Y
⁡
i
×
˙
D
⁡
X
13
7
8
9
10
11
12
syl113anc
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
∧
X
·
˙
z
=
Y
→
z
=
i
∈
N
⟼
D
⁡
X
N
matRepV
R
Y
⁡
i
×
˙
D
⁡
X
14
13
ex
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
∧
z
∈
V
→
X
·
˙
z
=
Y
→
z
=
i
∈
N
⟼
D
⁡
X
N
matRepV
R
Y
⁡
i
×
˙
D
⁡
X
15
14
ralrimiva
⊢
R
∈
CRing
∧
X
∈
B
∧
Y
∈
V
∧
D
⁡
X
∈
Unit
⁡
R
→
∀
z
∈
V
X
·
˙
z
=
Y
→
z
=
i
∈
N
⟼
D
⁡
X
N
matRepV
R
Y
⁡
i
×
˙
D
⁡
X