Metamath Proof Explorer


Theorem cramerlem2

Description: Lemma 2 for cramer . (Contributed by AV, 21-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramer.a A = N Mat R
cramer.b B = Base A
cramer.v V = Base R N
cramer.d D = N maDet R
cramer.x · ˙ = R maVecMul N N
cramer.q × ˙ = / r R
Assertion cramerlem2 R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X

Proof

Step Hyp Ref Expression
1 cramer.a A = N Mat R
2 cramer.b B = Base A
3 cramer.v V = Base R N
4 cramer.d D = N maDet R
5 cramer.x · ˙ = R maVecMul N N
6 cramer.q × ˙ = / r R
7 simpll1 R CRing X B Y V D X Unit R z V X · ˙ z = Y R CRing
8 simpll2 R CRing X B Y V D X Unit R z V X · ˙ z = Y X B Y V
9 simpll3 R CRing X B Y V D X Unit R z V X · ˙ z = Y D X Unit R
10 simplr R CRing X B Y V D X Unit R z V X · ˙ z = Y z V
11 simpr R CRing X B Y V D X Unit R z V X · ˙ z = Y X · ˙ z = Y
12 1 2 3 4 5 6 cramerlem1 R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X
13 7 8 9 10 11 12 syl113anc R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X
14 13 ex R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X
15 14 ralrimiva R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X