Metamath Proof Explorer


Theorem cramerlem3

Description: Lemma 3 for cramer . (Contributed by AV, 21-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramer.a A = N Mat R
cramer.b B = Base A
cramer.v V = Base R N
cramer.d D = N maDet R
cramer.x · ˙ = R maVecMul N N
cramer.q × ˙ = / r R
Assertion cramerlem3 N R CRing X B Y V D X Unit R Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y

Proof

Step Hyp Ref Expression
1 cramer.a A = N Mat R
2 cramer.b B = Base A
3 cramer.v V = Base R N
4 cramer.d D = N maDet R
5 cramer.x · ˙ = R maVecMul N N
6 cramer.q × ˙ = / r R
7 1 2 3 5 4 slesolex N R CRing X B Y V D X Unit R v V X · ˙ v = Y
8 1 2 3 4 5 6 cramerlem2 R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X
9 8 3adant1l N R CRing X B Y V D X Unit R z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X
10 oveq2 z = v X · ˙ z = X · ˙ v
11 10 eqeq1d z = v X · ˙ z = Y X · ˙ v = Y
12 oveq2 v = i N D X N matRepV R Y i × ˙ D X X · ˙ v = X · ˙ i N D X N matRepV R Y i × ˙ D X
13 12 eqeq1d v = i N D X N matRepV R Y i × ˙ D X X · ˙ v = Y X · ˙ i N D X N matRepV R Y i × ˙ D X = Y
14 11 13 rexraleqim v V X · ˙ v = Y z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X X · ˙ i N D X N matRepV R Y i × ˙ D X = Y
15 oveq2 Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = X · ˙ i N D X N matRepV R Y i × ˙ D X
16 15 adantl X · ˙ i N D X N matRepV R Y i × ˙ D X = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = X · ˙ i N D X N matRepV R Y i × ˙ D X
17 simpl X · ˙ i N D X N matRepV R Y i × ˙ D X = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ i N D X N matRepV R Y i × ˙ D X = Y
18 16 17 eqtrd X · ˙ i N D X N matRepV R Y i × ˙ D X = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
19 18 ex X · ˙ i N D X N matRepV R Y i × ˙ D X = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
20 19 a1d X · ˙ i N D X N matRepV R Y i × ˙ D X = Y N R CRing X B Y V D X Unit R Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
21 14 20 syl v V X · ˙ v = Y z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X N R CRing X B Y V D X Unit R Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
22 21 expcom z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X v V X · ˙ v = Y N R CRing X B Y V D X Unit R Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
23 22 com23 z V X · ˙ z = Y z = i N D X N matRepV R Y i × ˙ D X N R CRing X B Y V D X Unit R v V X · ˙ v = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
24 9 23 mpcom N R CRing X B Y V D X Unit R v V X · ˙ v = Y Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y
25 7 24 mpd N R CRing X B Y V D X Unit R Z = i N D X N matRepV R Y i × ˙ D X X · ˙ Z = Y