Metamath Proof Explorer


Theorem crctcshlem1

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v V = Vtx G
crctcsh.i I = iEdg G
crctcsh.d φ F Circuits G P
crctcsh.n N = F
Assertion crctcshlem1 φ N 0

Proof

Step Hyp Ref Expression
1 crctcsh.v V = Vtx G
2 crctcsh.i I = iEdg G
3 crctcsh.d φ F Circuits G P
4 crctcsh.n N = F
5 crctiswlk F Circuits G P F Walks G P
6 wlkcl F Walks G P F 0
7 4 6 eqeltrid F Walks G P N 0
8 3 5 7 3syl φ N 0