Metamath Proof Explorer


Theorem crctcshlem1

Description: Lemma for crctcsh . (Contributed by AV, 10-Mar-2021)

Ref Expression
Hypotheses crctcsh.v V=VtxG
crctcsh.i I=iEdgG
crctcsh.d φFCircuitsGP
crctcsh.n N=F
Assertion crctcshlem1 φN0

Proof

Step Hyp Ref Expression
1 crctcsh.v V=VtxG
2 crctcsh.i I=iEdgG
3 crctcsh.d φFCircuitsGP
4 crctcsh.n N=F
5 crctiswlk FCircuitsGPFWalksGP
6 wlkcl FWalksGPF0
7 4 6 eqeltrid FWalksGPN0
8 3 5 7 3syl φN0