Database
GRAPH THEORY
Walks, paths and cycles
Circuits and cycles
crctcshwlkn0lem1
Next ⟩
crctcshwlkn0lem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
crctcshwlkn0lem1
Description:
Lemma for
crctcshwlkn0
.
(Contributed by
AV
, 13-Mar-2021)
Ref
Expression
Assertion
crctcshwlkn0lem1
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
-
B
+
1
≤
A
Proof
Step
Hyp
Ref
Expression
1
recn
⊢
A
∈
ℝ
→
A
∈
ℂ
2
1
adantr
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
∈
ℂ
3
nncn
⊢
B
∈
ℕ
→
B
∈
ℂ
4
3
adantl
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
B
∈
ℂ
5
1cnd
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
1
∈
ℂ
6
subsub
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
1
∈
ℂ
→
A
−
B
−
1
=
A
-
B
+
1
7
6
eqcomd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
1
∈
ℂ
→
A
-
B
+
1
=
A
−
B
−
1
8
2
4
5
7
syl3anc
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
-
B
+
1
=
A
−
B
−
1
9
nnm1ge0
⊢
B
∈
ℕ
→
0
≤
B
−
1
10
9
adantl
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
0
≤
B
−
1
11
nnre
⊢
B
∈
ℕ
→
B
∈
ℝ
12
peano2rem
⊢
B
∈
ℝ
→
B
−
1
∈
ℝ
13
11
12
syl
⊢
B
∈
ℕ
→
B
−
1
∈
ℝ
14
subge02
⊢
A
∈
ℝ
∧
B
−
1
∈
ℝ
→
0
≤
B
−
1
↔
A
−
B
−
1
≤
A
15
14
bicomd
⊢
A
∈
ℝ
∧
B
−
1
∈
ℝ
→
A
−
B
−
1
≤
A
↔
0
≤
B
−
1
16
13
15
sylan2
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
−
B
−
1
≤
A
↔
0
≤
B
−
1
17
10
16
mpbird
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
−
B
−
1
≤
A
18
8
17
eqbrtrd
⊢
A
∈
ℝ
∧
B
∈
ℕ
→
A
-
B
+
1
≤
A