Metamath Proof Explorer


Theorem crctcshwlkn0lem1

Description: Lemma for crctcshwlkn0 . (Contributed by AV, 13-Mar-2021)

Ref Expression
Assertion crctcshwlkn0lem1 A B A - B + 1 A

Proof

Step Hyp Ref Expression
1 recn A A
2 1 adantr A B A
3 nncn B B
4 3 adantl A B B
5 1cnd A B 1
6 subsub A B 1 A B 1 = A - B + 1
7 6 eqcomd A B 1 A - B + 1 = A B 1
8 2 4 5 7 syl3anc A B A - B + 1 = A B 1
9 nnm1ge0 B 0 B 1
10 9 adantl A B 0 B 1
11 nnre B B
12 peano2rem B B 1
13 11 12 syl B B 1
14 subge02 A B 1 0 B 1 A B 1 A
15 14 bicomd A B 1 A B 1 A 0 B 1
16 13 15 sylan2 A B A B 1 A 0 B 1
17 10 16 mpbird A B A B 1 A
18 8 17 eqbrtrd A B A - B + 1 A