Database
GRAPH THEORY
Walks, paths and cycles
Circuits and cycles
crctiswlk
Next ⟩
cyclispth
Metamath Proof Explorer
Ascii
Unicode
Theorem
crctiswlk
Description:
A circuit is a walk.
(Contributed by
AV
, 6-Apr-2021)
Ref
Expression
Assertion
crctiswlk
⊢
F
Circuits
⁡
G
P
→
F
Walks
⁡
G
P
Proof
Step
Hyp
Ref
Expression
1
crctistrl
⊢
F
Circuits
⁡
G
P
→
F
Trails
⁡
G
P
2
trliswlk
⊢
F
Trails
⁡
G
P
→
F
Walks
⁡
G
P
3
1
2
syl
⊢
F
Circuits
⁡
G
P
→
F
Walks
⁡
G
P