Metamath Proof Explorer


Theorem creur

Description: The real part of a complex number is unique. Proposition 10-1.3 of Gleason p. 130. (Contributed by NM, 9-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion creur A ∃! x y A = x + i y

Proof

Step Hyp Ref Expression
1 cnre A z w A = z + i w
2 cru x y z w x + i y = z + i w x = z y = w
3 2 ancoms z w x y x + i y = z + i w x = z y = w
4 eqcom z + i w = x + i y x + i y = z + i w
5 ancom y = w x = z x = z y = w
6 3 4 5 3bitr4g z w x y z + i w = x + i y y = w x = z
7 6 anassrs z w x y z + i w = x + i y y = w x = z
8 7 rexbidva z w x y z + i w = x + i y y y = w x = z
9 biidd y = w x = z x = z
10 9 ceqsrexv w y y = w x = z x = z
11 10 ad2antlr z w x y y = w x = z x = z
12 8 11 bitrd z w x y z + i w = x + i y x = z
13 12 ralrimiva z w x y z + i w = x + i y x = z
14 reu6i z x y z + i w = x + i y x = z ∃! x y z + i w = x + i y
15 13 14 syldan z w ∃! x y z + i w = x + i y
16 eqeq1 A = z + i w A = x + i y z + i w = x + i y
17 16 rexbidv A = z + i w y A = x + i y y z + i w = x + i y
18 17 reubidv A = z + i w ∃! x y A = x + i y ∃! x y z + i w = x + i y
19 15 18 syl5ibrcom z w A = z + i w ∃! x y A = x + i y
20 19 rexlimivv z w A = z + i w ∃! x y A = x + i y
21 1 20 syl A ∃! x y A = x + i y