Metamath Proof Explorer


Theorem crim

Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion crim A B A + i B = B

Proof

Step Hyp Ref Expression
1 recn A A
2 ax-icn i
3 recn B B
4 mulcl i B i B
5 2 3 4 sylancr B i B
6 addcl A i B A + i B
7 1 5 6 syl2an A B A + i B
8 imval A + i B A + i B = A + i B i
9 7 8 syl A B A + i B = A + i B i
10 2 4 mpan B i B
11 ine0 i 0
12 divdir A i B i i 0 A + i B i = A i + i B i
13 12 3expa A i B i i 0 A + i B i = A i + i B i
14 2 11 13 mpanr12 A i B A + i B i = A i + i B i
15 10 14 sylan2 A B A + i B i = A i + i B i
16 divrec2 A i i 0 A i = 1 i A
17 2 11 16 mp3an23 A A i = 1 i A
18 irec 1 i = i
19 18 oveq1i 1 i A = i A
20 19 a1i A 1 i A = i A
21 mulneg12 i A i A = i A
22 2 21 mpan A i A = i A
23 17 20 22 3eqtrd A A i = i A
24 divcan3 B i i 0 i B i = B
25 2 11 24 mp3an23 B i B i = B
26 23 25 oveqan12d A B A i + i B i = i A + B
27 negcl A A
28 mulcl i A i A
29 2 27 28 sylancr A i A
30 addcom i A B i A + B = B + i A
31 29 30 sylan A B i A + B = B + i A
32 15 26 31 3eqtrrd A B B + i A = A + i B i
33 1 3 32 syl2an A B B + i A = A + i B i
34 33 fveq2d A B B + i A = A + i B i
35 id B B
36 renegcl A A
37 crre B A B + i A = B
38 35 36 37 syl2anr A B B + i A = B
39 9 34 38 3eqtr2d A B A + i B = B