Metamath Proof Explorer


Theorem crimd

Description: The imaginary part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses crred.1 φ A
crred.2 φ B
Assertion crimd φ A + i B = B

Proof

Step Hyp Ref Expression
1 crred.1 φ A
2 crred.2 φ B
3 crim A B A + i B = B
4 1 2 3 syl2anc φ A + i B = B