Metamath Proof Explorer


Theorem crngbascntr

Description: The base set of a commutative ring is its center. (Contributed by SN, 21-Mar-2025)

Ref Expression
Hypotheses crngbascntr.b B = Base G
crngbascntr.z Z = Cntr mulGrp G
Assertion crngbascntr G CRing B = Z

Proof

Step Hyp Ref Expression
1 crngbascntr.b B = Base G
2 crngbascntr.z Z = Cntr mulGrp G
3 eqid mulGrp G = mulGrp G
4 3 crngmgp G CRing mulGrp G CMnd
5 3 1 mgpbas B = Base mulGrp G
6 5 2 cmnbascntr mulGrp G CMnd B = Z
7 4 6 syl G CRing B = Z