Metamath Proof Explorer


Theorem crngcom

Description: A commutative ring's multiplication operation is commutative. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses ringcl.b B = Base R
ringcl.t · ˙ = R
Assertion crngcom R CRing X B Y B X · ˙ Y = Y · ˙ X

Proof

Step Hyp Ref Expression
1 ringcl.b B = Base R
2 ringcl.t · ˙ = R
3 eqid mulGrp R = mulGrp R
4 3 crngmgp R CRing mulGrp R CMnd
5 3 1 mgpbas B = Base mulGrp R
6 3 2 mgpplusg · ˙ = + mulGrp R
7 5 6 cmncom mulGrp R CMnd X B Y B X · ˙ Y = Y · ˙ X
8 4 7 syl3an1 R CRing X B Y B X · ˙ Y = Y · ˙ X