Metamath Proof Explorer


Theorem crngcomd

Description: Multiplication is commutative in a commutative ring. (Contributed by SN, 8-Mar-2025)

Ref Expression
Hypotheses crngcomd.b B = Base R
crngcomd.t · ˙ = R
crngcomd.r φ R CRing
crngcomd.1 φ X B
crngcomd.2 φ Y B
Assertion crngcomd φ X · ˙ Y = Y · ˙ X

Proof

Step Hyp Ref Expression
1 crngcomd.b B = Base R
2 crngcomd.t · ˙ = R
3 crngcomd.r φ R CRing
4 crngcomd.1 φ X B
5 crngcomd.2 φ Y B
6 1 2 crngcom R CRing X B Y B X · ˙ Y = Y · ˙ X
7 3 4 5 6 syl3anc φ X · ˙ Y = Y · ˙ X