Metamath Proof Explorer


Theorem crngm23

Description: Commutative/associative law for commutative rings. (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses crngm.1 G = 1 st R
crngm.2 H = 2 nd R
crngm.3 X = ran G
Assertion crngm23 R CRingOps A X B X C X A H B H C = A H C H B

Proof

Step Hyp Ref Expression
1 crngm.1 G = 1 st R
2 crngm.2 H = 2 nd R
3 crngm.3 X = ran G
4 1 2 3 crngocom R CRingOps B X C X B H C = C H B
5 4 3adant3r1 R CRingOps A X B X C X B H C = C H B
6 5 oveq2d R CRingOps A X B X C X A H B H C = A H C H B
7 crngorngo R CRingOps R RingOps
8 1 2 3 rngoass R RingOps A X B X C X A H B H C = A H B H C
9 7 8 sylan R CRingOps A X B X C X A H B H C = A H B H C
10 1 2 3 rngoass R RingOps A X C X B X A H C H B = A H C H B
11 10 3exp2 R RingOps A X C X B X A H C H B = A H C H B
12 11 com34 R RingOps A X B X C X A H C H B = A H C H B
13 12 3imp2 R RingOps A X B X C X A H C H B = A H C H B
14 7 13 sylan R CRingOps A X B X C X A H C H B = A H C H B
15 6 9 14 3eqtr4d R CRingOps A X B X C X A H B H C = A H C H B