Metamath Proof Explorer


Theorem crngmxidl

Description: In a commutative ring, maximal ideals of the opposite ring coincide with maximal ideals. (Contributed by Thierry Arnoux, 13-Mar-2025)

Ref Expression
Hypotheses crngmxidl.i No typesetting found for |- M = ( MaxIdeal ` R ) with typecode |-
crngmxidl.o O = opp r R
Assertion crngmxidl Could not format assertion : No typesetting found for |- ( R e. CRing -> M = ( MaxIdeal ` O ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 crngmxidl.i Could not format M = ( MaxIdeal ` R ) : No typesetting found for |- M = ( MaxIdeal ` R ) with typecode |-
2 crngmxidl.o O = opp r R
3 1 eleq2i Could not format ( m e. M <-> m e. ( MaxIdeal ` R ) ) : No typesetting found for |- ( m e. M <-> m e. ( MaxIdeal ` R ) ) with typecode |-
4 eqid LIdeal R = LIdeal R
5 4 2 crngridl R CRing LIdeal R = LIdeal O
6 5 eleq2d R CRing m LIdeal R m LIdeal O
7 5 raleqdv R CRing j LIdeal R m j j = m j = Base R j LIdeal O m j j = m j = Base R
8 6 7 3anbi13d R CRing m LIdeal R m Base R j LIdeal R m j j = m j = Base R m LIdeal O m Base R j LIdeal O m j j = m j = Base R
9 crngring R CRing R Ring
10 eqid Base R = Base R
11 10 ismxidl Could not format ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. Ring -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
12 9 11 syl Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> ( m e. ( LIdeal ` R ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` R ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
13 2 opprring R Ring O Ring
14 2 10 opprbas Base R = Base O
15 14 ismxidl Could not format ( O e. Ring -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( O e. Ring -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
16 9 13 15 3syl Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` O ) <-> ( m e. ( LIdeal ` O ) /\ m =/= ( Base ` R ) /\ A. j e. ( LIdeal ` O ) ( m C_ j -> ( j = m \/ j = ( Base ` R ) ) ) ) ) ) with typecode |-
17 8 12 16 3bitr4d Could not format ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> m e. ( MaxIdeal ` O ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. ( MaxIdeal ` R ) <-> m e. ( MaxIdeal ` O ) ) ) with typecode |-
18 3 17 bitrid Could not format ( R e. CRing -> ( m e. M <-> m e. ( MaxIdeal ` O ) ) ) : No typesetting found for |- ( R e. CRing -> ( m e. M <-> m e. ( MaxIdeal ` O ) ) ) with typecode |-
19 18 eqrdv Could not format ( R e. CRing -> M = ( MaxIdeal ` O ) ) : No typesetting found for |- ( R e. CRing -> M = ( MaxIdeal ` O ) ) with typecode |-