Metamath Proof Explorer


Theorem crngocom

Description: The multiplication operation of a commutative ring is commutative. (Contributed by Jeff Madsen, 8-Jun-2010)

Ref Expression
Hypotheses crngocom.1 G = 1 st R
crngocom.2 H = 2 nd R
crngocom.3 X = ran G
Assertion crngocom R CRingOps A X B X A H B = B H A

Proof

Step Hyp Ref Expression
1 crngocom.1 G = 1 st R
2 crngocom.2 H = 2 nd R
3 crngocom.3 X = ran G
4 1 2 3 iscrngo2 R CRingOps R RingOps x X y X x H y = y H x
5 4 simprbi R CRingOps x X y X x H y = y H x
6 oveq1 x = A x H y = A H y
7 oveq2 x = A y H x = y H A
8 6 7 eqeq12d x = A x H y = y H x A H y = y H A
9 oveq2 y = B A H y = A H B
10 oveq1 y = B y H A = B H A
11 9 10 eqeq12d y = B A H y = y H A A H B = B H A
12 8 11 rspc2v A X B X x X y X x H y = y H x A H B = B H A
13 5 12 mpan9 R CRingOps A X B X A H B = B H A
14 13 3impb R CRingOps A X B X A H B = B H A