Metamath Proof Explorer


Theorem crngridl

Description: In a commutative ring, the left and right ideals coincide. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses crng2idl.i I = LIdeal R
crngridl.o O = opp r R
Assertion crngridl R CRing I = LIdeal O

Proof

Step Hyp Ref Expression
1 crng2idl.i I = LIdeal R
2 crngridl.o O = opp r R
3 eqidd R CRing Base R = Base R
4 eqid Base R = Base R
5 2 4 opprbas Base R = Base O
6 5 a1i R CRing Base R = Base O
7 ssv Base R V
8 7 a1i R CRing Base R V
9 eqid + R = + R
10 2 9 oppradd + R = + O
11 10 oveqi x + R y = x + O y
12 11 a1i R CRing x V y V x + R y = x + O y
13 ovexd R CRing x Base R y Base R x R y V
14 eqid R = R
15 eqid O = O
16 4 14 2 15 crngoppr R CRing x Base R y Base R x R y = x O y
17 16 3expb R CRing x Base R y Base R x R y = x O y
18 3 6 8 12 13 17 lidlrsppropd R CRing LIdeal R = LIdeal O RSpan R = RSpan O
19 18 simpld R CRing LIdeal R = LIdeal O
20 1 19 eqtrid R CRing I = LIdeal O