Metamath Proof Explorer


Theorem crngunit

Description: Property of being a unit in a commutative ring. (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses crngunit.1 U = Unit R
crngunit.2 1 ˙ = 1 R
crngunit.3 ˙ = r R
Assertion crngunit R CRing X U X ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 crngunit.1 U = Unit R
2 crngunit.2 1 ˙ = 1 R
3 crngunit.3 ˙ = r R
4 eqid Base R = Base R
5 eqid R = R
6 eqid opp r R = opp r R
7 eqid opp r R = opp r R
8 4 5 6 7 crngoppr R CRing y Base R X Base R y R X = y opp r R X
9 8 3expa R CRing y Base R X Base R y R X = y opp r R X
10 9 eqcomd R CRing y Base R X Base R y opp r R X = y R X
11 10 an32s R CRing X Base R y Base R y opp r R X = y R X
12 11 eqeq1d R CRing X Base R y Base R y opp r R X = 1 ˙ y R X = 1 ˙
13 12 rexbidva R CRing X Base R y Base R y opp r R X = 1 ˙ y Base R y R X = 1 ˙
14 13 pm5.32da R CRing X Base R y Base R y opp r R X = 1 ˙ X Base R y Base R y R X = 1 ˙
15 6 4 opprbas Base R = Base opp r R
16 eqid r opp r R = r opp r R
17 15 16 7 dvdsr X r opp r R 1 ˙ X Base R y Base R y opp r R X = 1 ˙
18 4 3 5 dvdsr X ˙ 1 ˙ X Base R y Base R y R X = 1 ˙
19 14 17 18 3bitr4g R CRing X r opp r R 1 ˙ X ˙ 1 ˙
20 19 anbi2d R CRing X ˙ 1 ˙ X r opp r R 1 ˙ X ˙ 1 ˙ X ˙ 1 ˙
21 1 2 3 6 16 isunit X U X ˙ 1 ˙ X r opp r R 1 ˙
22 pm4.24 X ˙ 1 ˙ X ˙ 1 ˙ X ˙ 1 ˙
23 20 21 22 3bitr4g R CRing X U X ˙ 1 ˙