Step |
Hyp |
Ref |
Expression |
1 |
|
recn |
|
2 |
|
ax-icn |
|
3 |
|
recn |
|
4 |
|
mulcl |
|
5 |
2 3 4
|
sylancr |
|
6 |
|
addcl |
|
7 |
1 5 6
|
syl2an |
|
8 |
|
reval |
|
9 |
7 8
|
syl |
|
10 |
|
cjcl |
|
11 |
7 10
|
syl |
|
12 |
7 11
|
addcld |
|
13 |
12
|
halfcld |
|
14 |
1
|
adantr |
|
15 |
|
recl |
|
16 |
7 15
|
syl |
|
17 |
9 16
|
eqeltrrd |
|
18 |
|
simpl |
|
19 |
17 18
|
resubcld |
|
20 |
2
|
a1i |
|
21 |
3
|
adantl |
|
22 |
2 21 4
|
sylancr |
|
23 |
7 11
|
subcld |
|
24 |
23
|
halfcld |
|
25 |
20 22 24
|
subdid |
|
26 |
14 22 14
|
pnpcand |
|
27 |
22 14 22
|
pnpcan2d |
|
28 |
26 27
|
eqtr4d |
|
29 |
28
|
oveq1d |
|
30 |
14 14
|
addcld |
|
31 |
7 11 30
|
addsubd |
|
32 |
22 22
|
addcld |
|
33 |
32 7 11
|
subsubd |
|
34 |
29 31 33
|
3eqtr4d |
|
35 |
14
|
2timesd |
|
36 |
35
|
oveq2d |
|
37 |
22
|
2timesd |
|
38 |
37
|
oveq1d |
|
39 |
34 36 38
|
3eqtr4d |
|
40 |
39
|
oveq1d |
|
41 |
|
2cn |
|
42 |
|
mulcl |
|
43 |
41 14 42
|
sylancr |
|
44 |
41
|
a1i |
|
45 |
|
2ne0 |
|
46 |
45
|
a1i |
|
47 |
12 43 44 46
|
divsubdird |
|
48 |
|
mulcl |
|
49 |
41 22 48
|
sylancr |
|
50 |
49 23 44 46
|
divsubdird |
|
51 |
40 47 50
|
3eqtr3d |
|
52 |
14 44 46
|
divcan3d |
|
53 |
52
|
oveq2d |
|
54 |
22 44 46
|
divcan3d |
|
55 |
54
|
oveq1d |
|
56 |
51 53 55
|
3eqtr3d |
|
57 |
56
|
oveq2d |
|
58 |
20 20 21
|
mulassd |
|
59 |
20 23 44 46
|
divassd |
|
60 |
58 59
|
oveq12d |
|
61 |
25 57 60
|
3eqtr4d |
|
62 |
|
ixi |
|
63 |
|
neg1rr |
|
64 |
62 63
|
eqeltri |
|
65 |
|
simpr |
|
66 |
|
remulcl |
|
67 |
64 65 66
|
sylancr |
|
68 |
|
cjth |
|
69 |
68
|
simprd |
|
70 |
7 69
|
syl |
|
71 |
70
|
rehalfcld |
|
72 |
67 71
|
resubcld |
|
73 |
61 72
|
eqeltrd |
|
74 |
|
rimul |
|
75 |
19 73 74
|
syl2anc |
|
76 |
13 14 75
|
subeq0d |
|
77 |
9 76
|
eqtrd |
|