Metamath Proof Explorer


Theorem crre

Description: The real part of a complex number representation. Definition 10-3.1 of Gleason p. 132. (Contributed by NM, 12-May-2005) (Revised by Mario Carneiro, 7-Nov-2013)

Ref Expression
Assertion crre A B A + i B = A

Proof

Step Hyp Ref Expression
1 recn A A
2 ax-icn i
3 recn B B
4 mulcl i B i B
5 2 3 4 sylancr B i B
6 addcl A i B A + i B
7 1 5 6 syl2an A B A + i B
8 reval A + i B A + i B = A + i B + A + i B 2
9 7 8 syl A B A + i B = A + i B + A + i B 2
10 cjcl A + i B A + i B
11 7 10 syl A B A + i B
12 7 11 addcld A B A + i B + A + i B
13 12 halfcld A B A + i B + A + i B 2
14 1 adantr A B A
15 recl A + i B A + i B
16 7 15 syl A B A + i B
17 9 16 eqeltrrd A B A + i B + A + i B 2
18 simpl A B A
19 17 18 resubcld A B A + i B + A + i B 2 A
20 2 a1i A B i
21 3 adantl A B B
22 2 21 4 sylancr A B i B
23 7 11 subcld A B A + i B - A + i B
24 23 halfcld A B A + i B - A + i B 2
25 20 22 24 subdid A B i i B A + i B - A + i B 2 = i i B i A + i B - A + i B 2
26 14 22 14 pnpcand A B A + i B - A + A = i B A
27 22 14 22 pnpcan2d A B i B + i B - A + i B = i B A
28 26 27 eqtr4d A B A + i B - A + A = i B + i B - A + i B
29 28 oveq1d A B A + i B - A + A + A + i B = i B + i B - A + i B + A + i B
30 14 14 addcld A B A + A
31 7 11 30 addsubd A B A + i B + A + i B - A + A = A + i B - A + A + A + i B
32 22 22 addcld A B i B + i B
33 32 7 11 subsubd A B i B + i B - A + i B - A + i B = i B + i B - A + i B + A + i B
34 29 31 33 3eqtr4d A B A + i B + A + i B - A + A = i B + i B - A + i B - A + i B
35 14 2timesd A B 2 A = A + A
36 35 oveq2d A B A + i B + A + i B - 2 A = A + i B + A + i B - A + A
37 22 2timesd A B 2 i B = i B + i B
38 37 oveq1d A B 2 i B A + i B - A + i B = i B + i B - A + i B - A + i B
39 34 36 38 3eqtr4d A B A + i B + A + i B - 2 A = 2 i B A + i B - A + i B
40 39 oveq1d A B A + i B + A + i B - 2 A 2 = 2 i B A + i B - A + i B 2
41 2cn 2
42 mulcl 2 A 2 A
43 41 14 42 sylancr A B 2 A
44 41 a1i A B 2
45 2ne0 2 0
46 45 a1i A B 2 0
47 12 43 44 46 divsubdird A B A + i B + A + i B - 2 A 2 = A + i B + A + i B 2 2 A 2
48 mulcl 2 i B 2 i B
49 41 22 48 sylancr A B 2 i B
50 49 23 44 46 divsubdird A B 2 i B A + i B - A + i B 2 = 2 i B 2 A + i B - A + i B 2
51 40 47 50 3eqtr3d A B A + i B + A + i B 2 2 A 2 = 2 i B 2 A + i B - A + i B 2
52 14 44 46 divcan3d A B 2 A 2 = A
53 52 oveq2d A B A + i B + A + i B 2 2 A 2 = A + i B + A + i B 2 A
54 22 44 46 divcan3d A B 2 i B 2 = i B
55 54 oveq1d A B 2 i B 2 A + i B - A + i B 2 = i B A + i B - A + i B 2
56 51 53 55 3eqtr3d A B A + i B + A + i B 2 A = i B A + i B - A + i B 2
57 56 oveq2d A B i A + i B + A + i B 2 A = i i B A + i B - A + i B 2
58 20 20 21 mulassd A B i i B = i i B
59 20 23 44 46 divassd A B i A + i B - A + i B 2 = i A + i B - A + i B 2
60 58 59 oveq12d A B i i B i A + i B - A + i B 2 = i i B i A + i B - A + i B 2
61 25 57 60 3eqtr4d A B i A + i B + A + i B 2 A = i i B i A + i B - A + i B 2
62 ixi i i = 1
63 neg1rr 1
64 62 63 eqeltri i i
65 simpr A B B
66 remulcl i i B i i B
67 64 65 66 sylancr A B i i B
68 cjth A + i B A + i B + A + i B i A + i B - A + i B
69 68 simprd A + i B i A + i B - A + i B
70 7 69 syl A B i A + i B - A + i B
71 70 rehalfcld A B i A + i B - A + i B 2
72 67 71 resubcld A B i i B i A + i B - A + i B 2
73 61 72 eqeltrd A B i A + i B + A + i B 2 A
74 rimul A + i B + A + i B 2 A i A + i B + A + i B 2 A A + i B + A + i B 2 A = 0
75 19 73 74 syl2anc A B A + i B + A + i B 2 A = 0
76 13 14 75 subeq0d A B A + i B + A + i B 2 = A
77 9 76 eqtrd A B A + i B = A