Metamath Proof Explorer


Theorem crreczi

Description: Reciprocal of a complex number in terms of real and imaginary components. Remark in Apostol p. 361. (Contributed by NM, 29-Apr-2005) (Proof shortened by Jeff Hankins, 16-Dec-2013)

Ref Expression
Hypotheses crrecz.1 A
crrecz.2 B
Assertion crreczi A 0 B 0 1 A + i B = A i B A 2 + B 2

Proof

Step Hyp Ref Expression
1 crrecz.1 A
2 crrecz.2 B
3 1 recni A
4 3 sqcli A 2
5 ax-icn i
6 2 recni B
7 5 6 mulcli i B
8 7 sqcli i B 2
9 4 8 negsubi A 2 + i B 2 = A 2 i B 2
10 5 6 sqmuli i B 2 = i 2 B 2
11 i2 i 2 = 1
12 11 oveq1i i 2 B 2 = -1 B 2
13 ax-1cn 1
14 6 sqcli B 2
15 13 14 mulneg1i -1 B 2 = 1 B 2
16 10 12 15 3eqtri i B 2 = 1 B 2
17 16 negeqi i B 2 = 1 B 2
18 13 14 mulcli 1 B 2
19 18 negnegi 1 B 2 = 1 B 2
20 14 mulid2i 1 B 2 = B 2
21 17 19 20 3eqtri i B 2 = B 2
22 21 oveq2i A 2 + i B 2 = A 2 + B 2
23 3 7 subsqi A 2 i B 2 = A + i B A i B
24 9 22 23 3eqtr3ri A + i B A i B = A 2 + B 2
25 24 oveq1i A + i B A i B A 2 + B 2 = A 2 + B 2 A 2 + B 2
26 neorian A 0 B 0 ¬ A = 0 B = 0
27 sumsqeq0 A B A = 0 B = 0 A 2 + B 2 = 0
28 1 2 27 mp2an A = 0 B = 0 A 2 + B 2 = 0
29 28 necon3bbii ¬ A = 0 B = 0 A 2 + B 2 0
30 26 29 bitri A 0 B 0 A 2 + B 2 0
31 3 7 addcli A + i B
32 3 7 subcli A i B
33 4 14 addcli A 2 + B 2
34 31 32 33 divasszi A 2 + B 2 0 A + i B A i B A 2 + B 2 = A + i B A i B A 2 + B 2
35 30 34 sylbi A 0 B 0 A + i B A i B A 2 + B 2 = A + i B A i B A 2 + B 2
36 divid A 2 + B 2 A 2 + B 2 0 A 2 + B 2 A 2 + B 2 = 1
37 33 36 mpan A 2 + B 2 0 A 2 + B 2 A 2 + B 2 = 1
38 30 37 sylbi A 0 B 0 A 2 + B 2 A 2 + B 2 = 1
39 25 35 38 3eqtr3a A 0 B 0 A + i B A i B A 2 + B 2 = 1
40 32 33 divclzi A 2 + B 2 0 A i B A 2 + B 2
41 30 40 sylbi A 0 B 0 A i B A 2 + B 2
42 31 a1i A 0 B 0 A + i B
43 crne0 A B A 0 B 0 A + i B 0
44 1 2 43 mp2an A 0 B 0 A + i B 0
45 44 biimpi A 0 B 0 A + i B 0
46 divmul 1 A i B A 2 + B 2 A + i B A + i B 0 1 A + i B = A i B A 2 + B 2 A + i B A i B A 2 + B 2 = 1
47 13 46 mp3an1 A i B A 2 + B 2 A + i B A + i B 0 1 A + i B = A i B A 2 + B 2 A + i B A i B A 2 + B 2 = 1
48 41 42 45 47 syl12anc A 0 B 0 1 A + i B = A i B A 2 + B 2 A + i B A i B A 2 + B 2 = 1
49 39 48 mpbird A 0 B 0 1 A + i B = A i B A 2 + B 2