Metamath Proof Explorer


Theorem csbcnv

Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbcnv A / x F -1 = A / x F -1

Proof

Step Hyp Ref Expression
1 sbcbr [˙A / x]˙ z F y z A / x F y
2 1 opabbii y z | [˙A / x]˙ z F y = y z | z A / x F y
3 csbopab A / x y z | z F y = y z | [˙A / x]˙ z F y
4 df-cnv A / x F -1 = y z | z A / x F y
5 2 3 4 3eqtr4ri A / x F -1 = A / x y z | z F y
6 df-cnv F -1 = y z | z F y
7 6 csbeq2i A / x F -1 = A / x y z | z F y
8 5 7 eqtr4i A / x F -1 = A / x F -1