Metamath Proof Explorer


Theorem csbco

Description: Composition law for chained substitutions into a class. Usage of this theorem is discouraged because it depends on ax-13 . Use the weaker csbcow when possible. (Contributed by NM, 10-Nov-2005) (New usage is discouraged.)

Ref Expression
Assertion csbco A / y y / x B = A / x B

Proof

Step Hyp Ref Expression
1 df-csb y / x B = z | [˙y / x]˙ z B
2 1 abeq2i z y / x B [˙y / x]˙ z B
3 2 sbcbii [˙A / y]˙ z y / x B [˙A / y]˙ [˙y / x]˙ z B
4 sbcco [˙A / y]˙ [˙y / x]˙ z B [˙A / x]˙ z B
5 3 4 bitri [˙A / y]˙ z y / x B [˙A / x]˙ z B
6 5 abbii z | [˙A / y]˙ z y / x B = z | [˙A / x]˙ z B
7 df-csb A / y y / x B = z | [˙A / y]˙ z y / x B
8 df-csb A / x B = z | [˙A / x]˙ z B
9 6 7 8 3eqtr4i A / y y / x B = A / x B