Metamath Proof Explorer


Theorem csbco3g

Description: Composition of two class substitutions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 27-Nov-2005) (Revised by Mario Carneiro, 11-Nov-2016) (New usage is discouraged.)

Ref Expression
Hypothesis sbcco3g.1 x = A B = C
Assertion csbco3g A V A / x B / y D = C / y D

Proof

Step Hyp Ref Expression
1 sbcco3g.1 x = A B = C
2 csbnestg A V A / x B / y D = A / x B / y D
3 elex A V A V
4 nfcvd A V _ x C
5 4 1 csbiegf A V A / x B = C
6 3 5 syl A V A / x B = C
7 6 csbeq1d A V A / x B / y D = C / y D
8 2 7 eqtrd A V A / x B / y D = C / y D