Metamath Proof Explorer


Theorem csbcom

Description: Commutative law for double substitution into a class. (Contributed by NM, 14-Nov-2005) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion csbcom A / x B / y C = B / y A / x C

Proof

Step Hyp Ref Expression
1 sbccom [˙A / x]˙ [˙B / y]˙ z C [˙B / y]˙ [˙A / x]˙ z C
2 sbcel2 [˙B / y]˙ z C z B / y C
3 2 sbcbii [˙A / x]˙ [˙B / y]˙ z C [˙A / x]˙ z B / y C
4 sbcel2 [˙A / x]˙ z C z A / x C
5 4 sbcbii [˙B / y]˙ [˙A / x]˙ z C [˙B / y]˙ z A / x C
6 1 3 5 3bitr3i [˙A / x]˙ z B / y C [˙B / y]˙ z A / x C
7 sbcel2 [˙A / x]˙ z B / y C z A / x B / y C
8 sbcel2 [˙B / y]˙ z A / x C z B / y A / x C
9 6 7 8 3bitr3i z A / x B / y C z B / y A / x C
10 9 eqriv A / x B / y C = B / y A / x C