Metamath Proof Explorer


Theorem csbconstg

Description: Substitution doesn't affect a constant B (in which x does not occur). csbconstgf with distinct variable requirement. (Contributed by Alan Sare, 22-Jul-2012) Avoid ax-12 . (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Assertion csbconstg A V A / x B = B

Proof

Step Hyp Ref Expression
1 csbeq1 y = A y / x B = A / x B
2 1 eqeq1d y = A y / x B = B A / x B = B
3 df-csb y / x B = z | [˙y / x]˙ z B
4 sbcg y V [˙y / x]˙ z B z B
5 4 elv [˙y / x]˙ z B z B
6 5 abbii z | [˙y / x]˙ z B = z | z B
7 abid2 z | z B = B
8 3 6 7 3eqtri y / x B = B
9 2 8 vtoclg A V A / x B = B