Metamath Proof Explorer


Theorem csbcow

Description: Composition law for chained substitutions into a class. Version of csbco with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 10-Nov-2005) (Revised by Gino Giotto, 10-Jan-2024)

Ref Expression
Assertion csbcow A / y y / x B = A / x B

Proof

Step Hyp Ref Expression
1 df-csb y / x B = z | [˙y / x]˙ z B
2 1 abeq2i z y / x B [˙y / x]˙ z B
3 2 sbcbii [˙A / y]˙ z y / x B [˙A / y]˙ [˙y / x]˙ z B
4 sbccow [˙A / y]˙ [˙y / x]˙ z B [˙A / x]˙ z B
5 3 4 bitri [˙A / y]˙ z y / x B [˙A / x]˙ z B
6 5 abbii z | [˙A / y]˙ z y / x B = z | [˙A / x]˙ z B
7 df-csb A / y y / x B = z | [˙A / y]˙ z y / x B
8 df-csb A / x B = z | [˙A / x]˙ z B
9 6 7 8 3eqtr4i A / y y / x B = A / x B