Metamath Proof Explorer


Theorem csbeq1

Description: Analogue of dfsbcq for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbeq1 A = B A / x C = B / x C

Proof

Step Hyp Ref Expression
1 dfsbcq A = B [˙A / x]˙ y C [˙B / x]˙ y C
2 1 abbidv A = B y | [˙A / x]˙ y C = y | [˙B / x]˙ y C
3 df-csb A / x C = y | [˙A / x]˙ y C
4 df-csb B / x C = y | [˙B / x]˙ y C
5 2 3 4 3eqtr4g A = B A / x C = B / x C