Metamath Proof Explorer


Theorem csbeq12dv

Description: Formula-building inference for class substitution. (Contributed by SN, 3-Nov-2023)

Ref Expression
Hypotheses csbeq12dv.1 φ A = C
csbeq12dv.2 φ B = D
Assertion csbeq12dv φ A / x B = C / x D

Proof

Step Hyp Ref Expression
1 csbeq12dv.1 φ A = C
2 csbeq12dv.2 φ B = D
3 1 csbeq1d φ A / x B = C / x B
4 2 csbeq2dv φ C / x B = C / x D
5 3 4 eqtrd φ A / x B = C / x D