Metamath Proof Explorer


Theorem csbeq2

Description: Substituting into equivalent classes gives equivalent results. (Contributed by Giovanni Mascellani, 9-Apr-2018)

Ref Expression
Assertion csbeq2 x B = C A / x B = A / x C

Proof

Step Hyp Ref Expression
1 eleq2 B = C y B y C
2 1 alimi x B = C x y B y C
3 sbcbi2 x y B y C [˙A / x]˙ y B [˙A / x]˙ y C
4 2 3 syl x B = C [˙A / x]˙ y B [˙A / x]˙ y C
5 4 abbidv x B = C y | [˙A / x]˙ y B = y | [˙A / x]˙ y C
6 df-csb A / x B = y | [˙A / x]˙ y B
7 df-csb A / x C = y | [˙A / x]˙ y C
8 5 6 7 3eqtr4g x B = C A / x B = A / x C