Metamath Proof Explorer


Theorem csbeq2d

Description: Formula-building deduction for class substitution. (Contributed by NM, 22-Nov-2005) (Revised by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses csbeq2d.1 x φ
csbeq2d.2 φ B = C
Assertion csbeq2d φ A / x B = A / x C

Proof

Step Hyp Ref Expression
1 csbeq2d.1 x φ
2 csbeq2d.2 φ B = C
3 2 eleq2d φ y B y C
4 1 3 sbcbid φ [˙A / x]˙ y B [˙A / x]˙ y C
5 4 abbidv φ y | [˙A / x]˙ y B = y | [˙A / x]˙ y C
6 df-csb A / x B = y | [˙A / x]˙ y B
7 df-csb A / x C = y | [˙A / x]˙ y C
8 5 6 7 3eqtr4g φ A / x B = A / x C