Metamath Proof Explorer


Theorem csbfv

Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbfv A / x F x = F A

Proof

Step Hyp Ref Expression
1 csbfv2g A V A / x F x = F A / x x
2 csbvarg A V A / x x = A
3 2 fveq2d A V F A / x x = F A
4 1 3 eqtrd A V A / x F x = F A
5 csbprc ¬ A V A / x F x =
6 fvprc ¬ A V F A =
7 5 6 eqtr4d ¬ A V A / x F x = F A
8 4 7 pm2.61i A / x F x = F A