Metamath Proof Explorer


Theorem csbfv2g

Description: Move class substitution in and out of a function value. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbfv2g A C A / x F B = F A / x B

Proof

Step Hyp Ref Expression
1 csbfv12 A / x F B = A / x F A / x B
2 csbconstg A C A / x F = F
3 2 fveq1d A C A / x F A / x B = F A / x B
4 1 3 eqtrid A C A / x F B = F A / x B