Metamath Proof Explorer


Theorem csbgfi

Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbgfi.1 A V
csbgfi.2 _ x B
Assertion csbgfi A / x B = B

Proof

Step Hyp Ref Expression
1 csbgfi.1 A V
2 csbgfi.2 _ x B
3 df-csb A / x B = y | [˙A / x]˙ y B
4 3 abeq2i y A / x B [˙A / x]˙ y B
5 2 nfcri x y B
6 1 5 sbcgfi [˙A / x]˙ y B y B
7 4 6 bitri y A / x B y B
8 7 eqriv A / x B = B