Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbid
Next ⟩
csbeq1a
Metamath Proof Explorer
Ascii
Unicode
Theorem
csbid
Description:
Analogue of
sbid
for proper substitution into a class.
(Contributed by
NM
, 10-Nov-2005)
Ref
Expression
Assertion
csbid
⊢
⦋
x
/
x
⦌
A
=
A
Proof
Step
Hyp
Ref
Expression
1
df-csb
⊢
⦋
x
/
x
⦌
A
=
y
|
[
˙
x
/
x
]
˙
y
∈
A
2
sbcid
⊢
[
˙
x
/
x
]
˙
y
∈
A
↔
y
∈
A
3
2
abbii
⊢
y
|
[
˙
x
/
x
]
˙
y
∈
A
=
y
|
y
∈
A
4
abid2
⊢
y
|
y
∈
A
=
A
5
1
3
4
3eqtri
⊢
⦋
x
/
x
⦌
A
=
A