Metamath Proof Explorer


Theorem csbid

Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbid x / x A = A

Proof

Step Hyp Ref Expression
1 df-csb x / x A = y | [˙x / x]˙ y A
2 sbcid [˙x / x]˙ y A y A
3 2 abbii y | [˙x / x]˙ y A = y | y A
4 abid2 y | y A = A
5 1 3 4 3eqtri x / x A = A