Metamath Proof Explorer


Theorem csbidm

Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion csbidm A / x A / x B = A / x B

Proof

Step Hyp Ref Expression
1 csbnest1g A V A / x A / x B = A / x A / x B
2 csbconstg A V A / x A = A
3 2 csbeq1d A V A / x A / x B = A / x B
4 1 3 eqtrd A V A / x A / x B = A / x B
5 csbprc ¬ A V A / x A / x B =
6 csbprc ¬ A V A / x B =
7 5 6 eqtr4d ¬ A V A / x A / x B = A / x B
8 4 7 pm2.61i A / x A / x B = A / x B