Metamath Proof Explorer


Theorem csbie

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbie.1 A V
csbie.2 x = A B = C
Assertion csbie A / x B = C

Proof

Step Hyp Ref Expression
1 csbie.1 A V
2 csbie.2 x = A B = C
3 df-csb A / x B = y | [˙A / x]˙ y B
4 2 eleq2d x = A y B y C
5 1 4 sbcie [˙A / x]˙ y B y C
6 5 abbii y | [˙A / x]˙ y B = y | y C
7 abid2 y | y C = C
8 3 6 7 3eqtri A / x B = C