Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbie
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit substitution into a
class. (Contributed by AV , 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto , 15-Oct-2024)
Ref
Expression
Hypotheses
csbie.1
⊢ A ∈ V
csbie.2
⊢ x = A → B = C
Assertion
csbie
⊢ ⦋ A / x ⦌ B = C
Proof
Step
Hyp
Ref
Expression
1
csbie.1
⊢ A ∈ V
2
csbie.2
⊢ x = A → B = C
3
df-csb
⊢ ⦋ A / x ⦌ B = y | [ ˙ A / x ] ˙ y ∈ B
4
2
eleq2d
⊢ x = A → y ∈ B ↔ y ∈ C
5
1 4
sbcie
⊢ [ ˙ A / x ] ˙ y ∈ B ↔ y ∈ C
6
5
abbii
⊢ y | [ ˙ A / x ] ˙ y ∈ B = y | y ∈ C
7
abid2
⊢ y | y ∈ C = C
8
3 6 7
3eqtri
⊢ ⦋ A / x ⦌ B = C