Metamath Proof Explorer


Theorem csbie2

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007)

Ref Expression
Hypotheses csbie2t.1 A V
csbie2t.2 B V
csbie2.3 x = A y = B C = D
Assertion csbie2 A / x B / y C = D

Proof

Step Hyp Ref Expression
1 csbie2t.1 A V
2 csbie2t.2 B V
3 csbie2.3 x = A y = B C = D
4 3 gen2 x y x = A y = B C = D
5 1 2 csbie2t x y x = A y = B C = D A / x B / y C = D
6 4 5 ax-mp A / x B / y C = D